1. Purpose
Shoulder dystocia is a relatively common event that is difficult to predict; almost half of all cases of shoulder dystocia have no antecedent factors. Anticipation and preparation are the keys to successful management. Specific manoeuvres must be employed to complete the birth after normal downward traction has failed to deliver the shoulders in a vaginal birth. These manoeuvres are designed to disimpact the fetal shoulder before further traction is applied. Inappropriate and excessive traction is associated with an increased incidence of fetal morbidity, including brachial plexus injuries.

This clinical guideline outlines the requirement for the management of Shoulder Dystocia at the Women's.

2. Definitions
Shoulder dystocia: disproportion between the bisacromial diameter of the fetus and the antero-posterior diameter of the pelvic inlet, the anterior shoulder of the fetus becoming impacted behind the symphysis pubis. Less commonly the posterior shoulder can impact on the maternal sacral promontory.

Pink Alert: a call for immediate obstetric assistance.

3. Responsibilities
- The midwife or medical practitioner who is responsible for the birth to recognize and initiate clinical management of this obstetric emergency
- Midwifery and medical staff providing assistance and or supervision
- Midwife requested to document manoeuvres and timing of same
- Paediatrician who is called upon to resuscitate the infant if required

4. Guideline
4. Principles of care
To assist the safe birth of the baby with minimal morbidity to mother or infant.

4.1. Intrapartum risks
- Prolonged first stage
- Prolonged second stage
- Augmentation of labour
- Instrumental birth
4.2 Recognition
Shoulder dystocia should be immediately suspected when:

- There is difficulty with the birth of the face and chin
- The head is born but remains tightly applied to the vulva
- The chin retracts into the perineum (the turtle sign)
- The anterior shoulder does not birth with normal downward traction

4.2. Management
On recognition of shoulder dystocia, call for help (emergency buzzer) and initiate a pink alert

- Senior midwife
- Additional midwifery staff
- Most experienced obstetric help available
- Paediatrician
- Consider obstetric consultant and anaesthetist
 - Clearly state the problem as ‘shoulder dystocia’ as help arrives
 - Note the time of the birth of the head
 - Ask the woman to stop pushing
 - Prepare the woman for emergency manoeuvres by laying her flat and removing any pillows from under her back and shoulders.
 - Assist the woman to the end of the bed or remove the end of the bed to make vaginal access easier.

Emergency manoeuvres for the management of shoulder dystocia are designed to do one of three things:

1. Increase the functional size of the bony pelvis
2. Decrease the bisacromial diameter of the fetus
3. Change the relationship of the bisacromial diameter within the bony pelvis by rotating the fetus into the wider oblique diameter

Each of the following manoeuvres should be attempted for up to 30 seconds before moving to the next manoeuvre.

NOTE: Throughout these manoeuvres the shoulders must be rotated using pressure on the scapula or clavicle. Never rotate the head.

AVOID EXCESSIVE TRACTION AT ALL TIMES
Strong downward traction or jerking without disimpacting the shoulder is associated with neonatal trauma including permanent brachial plexus injury. Once the dystocia has been diagnosed and birth attempted, move directly to the manoeuvres. Do not pull further on the fetal head.

AVOID FUNDAL PRESSURE
This is associated with a high rate of brachial plexus injury, uterine rupture and haemorrhage from potential detachment of fundal placenta.
4.3. **McRoberts manoeuvre**

The aim of this procedure is to increase the relative anteroposterior diameter of the pelvic inlet by reducing lumbosacral lordosis. This position has a reported success rate between 40% and 90%.

Place the woman in a recumbent position.

- Remove or lower the bottom of the bed and manipulate her buttocks to the extreme edge.
- With the aid of an assistant either side, the thighs are abducted and hyperflexed onto the abdomen (McRobert's position).

![McRoberts position](image)

4.4. **Suprapubic pressure (also known as Rubin 1)**

The aim of this manoeuvre is to reduce the diameter of the fetal shoulders and rotate the anterior shoulder into the oblique diameter. If this is achieved the shoulder should slip under the symphysis pubis.

- The accoucheur applies gentle downwards traction to the baby's head.
- Simultaneously the assistant adopts a CPR-hand position over the anterior shoulder. The initial pressure applied is continuous.
- If delivery is unsuccessful, a rocking motion may be applied.

If considering internal manoeuvres this is the time to cut (or extend) an episiotomy (if entering the pelvis is anticipated), as the perineum is clearly visible.

The assistant may be required to elevate the baby's head to improve the view of the perineum (thereby reducing potential trauma to the baby's face).

- This allows the accoucheur to use both hands to cut (or extend) the episiotomy.
- The accoucheur applies gentle downwards traction to the baby's head.
4.3 Internal manoeuvres

Internal manoeuvres should be performed if McRobert’s and suprapubic pressure have been unsuccessful. The aim of these manoeuvres is to effect internal rotation of the shoulders or delivery of the posterior arm to reduce the bisacromial diameter.

NOTE: The following manoeuvres may be undertaken in any order according to need. There is no evidence that one manoeuvre is more successful than another but all begin with inserting the whole hand into the sacral hollow. Normal downwards traction should be attempted after each manoeuvre to try to effect delivery.

Correct hand position

Correct hand position for insertion into the vagina is essential if internal manoeuvres are to be successful. The sacral hollow is the most spacious part of the pelvis; vaginal access can be gained more easily posteriorly. The correct hand position has been described “as if putting on a tight bracelet” where the fingers are compressed and the thumb tucked in to the palm.

Rubin’s II Manoeuvre

The accoucheur’s hand is inserted into the vagina and digital pressure is applied to the posterior aspect of the anterior shoulder pushing it towards the fetal chest. This rotates the shoulders forward into the more favourable oblique diameter.

Completion of the birth is then attempted using normal downwards traction.

Wood’s screw Manoeuvre

While maintaining the McRobert’s position, the accoucheur introduces their second hand and locates the anterior aspect of the posterior shoulder.

Pressure is applied to rotate the posterior shoulder.

Completion of the birth should be attempted once the shoulders move into the oblique diameter.

If this movement is unsuccessful continue rotation through 180° and attempt delivery.
Reverse Wood’s screw Manoeuvre
Pressure is applied to the posterior aspect of the posterior shoulder attempting to rotate it through 180° in the opposite direction to that described in the Wood's screw manoeuvre.

Delivery of the Posterior Arm
The fetus is usually in an attitude of flexion with the arms flexed over the chest.

The accoucheur passes their hand into the vagina over the chest of the fetus to identify the posterior arm and elbow. Apply pressure to the antecubital fossa to flex the elbow in front of the body, and/or grasp the posterior hand to sweep the arm across the chest and deliver the arm.

This is followed by rotation of the fetus into the oblique diameter of the pelvis, or through 180°, bringing the anterior shoulder under the symphysis pubis.

Rotation of the woman onto all fours
Rotation of the woman onto all fours may also facilitate delivery by increasing the pelvic diameters and allowing better access to the posterior shoulder.

While nomenclature of these manoeuvres may change within various textbooks, the management principles remain the same.

Posterior axilla sling traction (PAST) technique ¹³,¹⁴
The PAST technique makes use of a sling that is placed around the posterior axilla. The sling is typically a suction catheter or an in-out urinary catheter which is folded into a loop and threaded through the baby's posterior axilla. Downward traction can then be applied to the sling to deliver the posterior shoulder. If the posterior arm does not follow, it can be swept out more easily as room has been created by removing the posterior shoulder. The sling can also be used to rotate the shoulders if traction on the shoulder fails.

In order to rotate the shoulders, traction should be applied laterally towards the baby's back then anteriorly while digital pressure is applied behind the anterior shoulder to assist rotation.
The sling can be doubled or used singly. The doubled method provides more stability but the single method may be easier to insert and the extra length provides more grip.

The ends of the sling can be clamped to allow greater traction.

Please see this video ‘Shoulder Dystocia’ for instructions on how to insert and apply the sling traction.

Precautions

Avoid strong downward traction until the shoulder is disimpacted. Excessive traction is associated with neonatal trauma including permanent brachial plexus injury.

Avoid jerking or tugging on the fetal head during traction as this may be more damaging to the brachial plexus.

Avoid fundal pressure. This is associated with increased incidence of brachial plexus injury.

4.4 Cord Management

Shoulder dystocia, either without or with the presence of a nuchal cord places the infant at particular risk of hypovolaemia.

Compression on the cord or body of a tight fitting fetus may cause more fetal blood than usual to be extruded into the placenta. This situation may contribute to the poor condition of a number of infants at birth.

Cutting a tight nuchal cord prior to the birth of the shoulders has the potential to increase the infant’s risk of asphyxia, cerebral palsy and even death if there is severe shoulder dystocia. It is advisable to maintain an intact cord as far as possible.

Once the shoulders are free there are several options for management.

- Slip the cord over the head or down around the shoulders and slide the baby through the cord.
- Initiate the ‘Somersault Manoeuvre’. Deliver the baby slowly and bring the head as it is born towards the mother's thigh. Keep the baby low near the perineum while the body is delivered so that little traction is exerted on the cord.
- Avoid cutting the nuchal cord immediately after birth as the dynamics of cord compression will likely have resulted in an increased transfer of blood to the placenta. Pale colour and poor fetal tone equate with hypovolaemia of the infant. A delay in cord clamping is required for blood volume to equalise after birth and assist with the transition to neonatal life.
- If the cord needs to be divided immediately after birth the restoration of the infant’s blood volume can be assisted by rapidly milking the cord two to four times from the introitus to the infant’s umbilicus before cutting the cord.

4.5 Documentation

Accurate documentation of actions taken to address this obstetric emergency is essential. Level II evidence supports the use of a standardised checklist for shoulder dystocia as this significantly improves the documentation of critical elements of the birth.

Documentation includes:

- The time of birth of the head
- Manoeuvres performed, the timing and sequence
- The direction the baby is facing and which shoulder is impacted (right or left)
- The time of delivery of the body
- Staff in attendance
- The condition of the baby at birth
Guideline

Shoulder Dystocia

Utilisation of the MCIS Shoulder Dystocia Form ensures all important information is recorded. Consider also describing the shoulder dystocia by degree of difficulty in effecting the birth. The following examples have been suggested in the literature.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>McRoberts manoeuvre, Suprapubic pressure</td>
</tr>
<tr>
<td>Moderate</td>
<td>Rubin 2, Woods or reverse Woods manoeuvre, posterior shoulder delivery</td>
</tr>
<tr>
<td>Severe</td>
<td>Fracture clavicle or humerus</td>
</tr>
<tr>
<td>Undeliverable</td>
<td>Cephalic replacement and abdominal rescue</td>
</tr>
</tbody>
</table>

4.6 Debriefing

- Shoulder dystocia may be a traumatic situation for the mother and her birth partners.
- Clear communication and instructions to the woman and her birth partners is vital during the emergency.
- The emergency and the reason for the manoeuvres should be discussed after the birth.
- The baby should be assessed by a paediatrician to exclude or manage any fetal morbidity sustained.

Complications of Shoulder Dystocia

<table>
<thead>
<tr>
<th>Maternal</th>
<th>Neonatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 and 4th degree tears</td>
<td>Brachial plexus injury</td>
</tr>
<tr>
<td>PPH</td>
<td>Fractured humerus/clavicle</td>
</tr>
<tr>
<td>Uterine rupture</td>
<td>Hypoxia</td>
</tr>
<tr>
<td>Future obstetric issues</td>
<td>Death</td>
</tr>
<tr>
<td>Psychological effects of birth trauma</td>
<td></td>
</tr>
</tbody>
</table>

4.7 Morbidities

Humeral and clavicular fractures: can occur unintentionally or in the case of clavicular fracture as an intentional procedure to reduce the bisacromial diameter. These usually heal quickly and prognosis is good.

Brachial plexus injury: The brachial plexus is a network of nerves that conducts signals from the spinal cord to the arm and hand. These nerves originate in the fifth, sixth, seventh and eighth cervical (C5-C8), and first thoracic (T1) spinal nerves, and innervate the muscles and skin of the chest, shoulder, arm and hand. Brachial plexus injuries, or lesions, are caused by damage to those nerves. Several categories of palsy are described as a result of injury to specific nerves.

- Erb’s palsy is the most common brachial plexus injury and is characterised by a flaccid upper arm, an extended lower arm rotated towards the body and a hand in the ‘waiter’s tip’ position. Erb’s palsy generally recovers within 12 months.
- Klumpe’s Palsy is less common and is characterized by a limp hand and no movement of the fingers. Recovery rate is lower than Erb’s palsy with around 40% recovery within 12 months.
• A total brachial plexus injury is characterized by total sensory and motor deficit of the entire arm. Sympathetic nerve injury (Horner syndrome) can result in contraction of the pupil and ptosis of the eyelid on the affected side. Full recovery is rare without surgical intervention. Prognosis can be poor.

4.8 Incidence
Shoulder dystocia occurs in around 1% of all vaginal births.

4.9 Risks
Assessment of risk factors for shoulder dystocia has a poor predictive value and elective caesarean birth is indicated only in diabetic women with macrosomia or where the estimated fetal weight is greater than 5 kg in non-diabetic women. However there are antenatal and intrapartum risk factors of which clinicians should take note.

4.10 Prelabour

Previous shoulder dystocia: recurrence rate has been reported as at least 10%, however this rate may be an underestimate due to the number of women in this group who have subsequent elective caesarean births.

Macrosomia: is a weak predictor as up to 50% of shoulder dystocias occur in babies within the normal weight range. There is a 10% occurrence in babies 4.0-4.999kg and 23% for babies greater than 4.5kg. Third trimester ultrasound is a poor predictor of actual birth weight.

Maternal diabetes mellitus: the risk factor for shoulder dystocia is increased by 3 to 4 times that for a baby of similar weight. It has been suggested that this could be due to the different body shape of babies with diabetic mothers.

Maternal obesity: it has been suggested that the link between shoulder dystocia and maternal obesity may be more likely due to fetal macrosomia than the obesity itself.

5. Evaluation, monitoring and reporting of compliance to this guideline
To be developed.

6. References (evidence, best practice, websites, etc.)
8. O'Leary JA (2009) Delivery Techniques IN O'Leary JA Shoulder Dystocia and Birth Injury, Humana Press, a part of Springer Science and Business Media

7. Legislation/Regulations related to this guideline

Not applicable.

8. Appendices

Appendix 1: **Shoulder Dystocia Algorithm**

The policies, procedures and guidelines on this site contain a variety of copyright material. Some of this is the intellectual property of individuals (as named), some is owned by The Royal Women's Hospital itself. Some material is owned by others (clearly indicated) and yet other material is in the public domain. Except for material which is unambiguously and unarguably in the public domain, only material owned by The Royal Women’s Hospital and so indicated, may be copied, provided that textual and graphical content are not altered and that the source is acknowledged. The Royal Women’s Hospital reserves the right to revoke that permission at any time. Permission is not given for any commercial use or sale of this material. No other material anywhere on this website may be copied (except as legally allowed for under the Copyright Act 1968) or further disseminated without the express and written permission of the legal holder of that copyright. Advice about requesting permission to use third party copyright material or anything to do with copyright can be obtained from General Counsel.
Appendix 1

Shoulder Dystocia Algorithm

STOP PUSHING
- Remove pillows
- Lay woman flat
- Move buttocks to end of bed

Commence documentation using proforma/form
All manoeuvres: 30s each + normal traction if movement

Shoulder Dystocia recognised

Call for help

Mc Roberts Manoeuvre

Suprapubic pressure
30s sustained
30s rocking

Deliver the posterior arm

Consider episiotomy for internal manoeuvres
Order unimportant

Not successful

Internal manual manoeuvres
- Rubins 2
- + Wood Screw
- Reverse Wood Screw

Senior obstetric help
Anaesthetist

Consider all-fours position and deliver posterior shoulder

Repeat all manoeuvres

- Cleidotomy
- Symphysiotomy
- Zavanelli manoeuvre

Be prepared for: PPH, perineal trauma, birth trauma and hypoxia.
Consider: debrief the woman and birth partners, staff debrief, neonatal review